
CCA
Common Component Architecture

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

tutorial-wg@cca-forum.org

1

Welcome to the
Common Component Architecture

Tutorial

ACTS Collection Workshop
27 August 2004

CCA
Common Component Architecture

2

Agenda & Table of Contents

The TeamQuestions/Discussion3:20-3:30pm

David Bernholdt, ORNL6A Pictorial Introduction to
Components in Scientific Computing

11:35am-12:30pm

TAU Hands-On4:00-4:45pm

Lunch12:30-1:30pm

Rob Armstrong, SNL &
the Team

Hand-outCCA Hands-On4:45-6:30pm

Break/Relocate to Tolman Hall3:30-4:00pm

Tom Epperly, LLNL136Language Interoperable CCA
Components with Babel

2:50-3:20pm
Jaideep Ray, SNL87CCA Applications1:50-2:50pm
David Bernholdt, ORNL67Distributed Computing with the CCA1:30pm-1:50pm

David Bernholdt, ORNL26An Introduction to Components & the
CCA

David Bernholdt, ORNL1Welcome11:30-11:35am
PresenterSlide No.TitleTime

CCA
Common Component Architecture

3

The Common Component Architecture
(CCA) Forum

• Combination of standards body and user group for the CCA
• Define Specifications for High-Performance Scientific

Components & Frameworks
• Promote and Facilitate Development of Domain-Specific

“Standard” Interfaces
• Goal: Interoperability between components developed by

different expert teams across different institutions
• Quarterly Meetings, Open membership…

http://www.cca-forum.org/
Mailing List: cca-forum@cca-forum.org

CCA
Common Component Architecture

4

Acknowledgements:
Tutorial Working Group

• People: Rob Armstrong, David Bernholdt, Randy
Bramley, Wael Elwasif, Lori Freitag Diachin,
Madhusudhan Govindaraju, Ragib Hasan, Dan Katz,
Jim Kohl, Gary Kumfert, Lois Curfman McInnes,
Boyana Norris, Craig Rasmussen, Jaideep Ray,
Sameer Shende, Torsten Wilde, Shujia Zhou

• Institutions: ANL, Binghamton U, Indiana U, JPL,
LANL, LLNL, NASA/Goddard, ORNL, SNL, U Illinois,
U Oregon

• Computer facilities provided by the Computer
Science Department and University Information
Technology Services of Indiana University, supported
in part by NSF grants CDA-9601632 and EIA-
0202048.

CCA
Common Component Architecture

5

Acknowledgements: The CCA

• ANL –Steve Benson, Jay Larson, Ray Loy, Lois Curfman McInnes,
Boyana Norris, Everest Ong, Jason Sarich…

• Binghamton University - Madhu Govindaraju, Michael Lewis, …
• Indiana University - Randall Bramley, Dennis Gannon, …
• JPL – Dan Katz, …
• LANL - Craig Rasmussen, Matt Sotille, …
• LLNL – Lori Freitag Diachin, Tom Epperly, Scott Kohn, Gary

Kumfert, …
• NASA/Goddard – Shujia Zhou
• ORNL - David Bernholdt, Wael Elwasif, Jim Kohl, Torsten Wilde, …
• PNNL - Jarek Nieplocha, Theresa Windus, …
• SNL - Rob Armstrong, Ben Allan, Lori Freitag Diachin, Curt

Janssen, Jaideep Ray, …
• University of Oregon – Allen Malony, Sameer Shende, …
• University of Utah - Steve Parker, …
and many more… without whom we wouldn’t have much to talk about!

CCA
Common Component Architecture

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

tutorial-wg@cca-forum.org

6

A Pictorial Introduction
to Components

in Scientific Computing

CCA
Common Component Architecture

7

Once upon a time...

Input

Output

Program

CCA
Common Component Architecture

8

As Scientific Computing grew...

CCA
Common Component Architecture

9

Tried to ease the bottle neck

CCA
Common Component Architecture

10

SPMD was born.

21

3 4

21

3 4

2

1

3

4

CCA
Common Component Architecture

11

SPMD worked.

21

3 4

21

3 4

2

1

3

4

But it
isn’t

easy!!!

But it
isn’t

easy!!!

CCA
Common Component Architecture

12

Meanwhile, corporate computing was growing
in a different way

Input

Output

Program

browser

spreadsheet

editor

graphics

databasemultimedia

email client

Unicode

Input

CCA
Common Component Architecture

13

This created a whole new set of problems
complexity

browser

spreadsheet

editor

graphics

databasemultimedia

email client

Unicode

• Interoperability across
multiple languages

• Interoperability across
multiple platforms

• Incremental evolution of
large legacy systems
(esp. w/ multiple 3rd
party software)

CCA
Common Component Architecture

14

Component Technology
addresses these problems

CCA
Common Component Architecture

15

So what’s a component ???
Implementation :
No Direct Access

Interface Access :
Generated by Tools

Matching Connector :
Assigned by Framework
Hidden from User

CCA
Common Component Architecture

16

1. Interoperability across
multiple languages

C

C++ F77 Java

Python

Language &
Platform

independent
interfaces

Automatically
generated

bindings to
working code

CCA
Common Component Architecture

17

2. Interoperability Across Multiple
Platforms

Imagine a company
migrates to a new

system, OS, etc.

What if the
source to

this one part
is lost???

CCA
Common Component Architecture

18

Transparent Distributed Computing

internetinternet

These wires
are very,

very smart!

CCA
Common Component Architecture

19

3. Incremental Evolution With
Multiple 3rd party software

v 1.0

v 2.0 v 3.0

CCA
Common Component Architecture

20

Now suppose you find this bug...

v 1.0

v 2.0 v 3.0

CCA
Common Component Architecture

21

Good news: an upgrade available

v 1.0

v 2.0 v 3.0

Bad news: there’s a dependency

2.1

2.0

CCA
Common Component Architecture

22

v 3.02.1

2.0

Great News:
Solvable with Components

CCA
Common Component Architecture

23

v 1.0

Great News:
Solvable with Components

2.1 v 3.0

2.0

CCA
Common Component Architecture

24

Why Components for Scientific Computing
Complexity

• Interoperability across
multiple languages

• Interoperability across
multiple platforms

• Incremental evolution of
large legacy systems
(esp. w/ multiple 3rd
party software)

Sapphire

SAMRAI

Ardra
Scientific Viz

DataFoundry

Overture

linear solvers hypre
nonlinear solvers

ALPS

JEEP

CCA
Common Component Architecture

25

The Model for Scientific Component
Programming

Science

Industry

CCA

CCA
Common Component Architecture

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

tutorial-wg@cca-forum.org

26

An Introduction to Components
and the

Common Component Architecture

CCA
Common Component Architecture

27

Goals of This Module

• Introduce basic concepts and vocabulary of
component-based software engineering and
the CCA

• Highlight the special demands of high-
performance scientific computing on
component environments

CCA
Common Component Architecture

28

Component-Based Software Engineering

• CBSE methodology is an emerging approach
to software development
– Both in research an in practical application
– Especially popular in business and internet areas

• Addresses software complexity issues

• Increases software productivity

CCA
Common Component Architecture

29

Motivation: For Library Developers

• People want to use your software, but need wrappers
in languages you don’t support
– Many component models provide language interoperability

• Discussions about standardizing interfaces are often
sidetracked into implementation issues
– Components separate interfaces from implementation

• You want users to stick to your published interface
and prevent them from stumbling (prying) into the
implementation details
– Most component models actively enforce the separation

CCA
Common Component Architecture

30

Motivation: For Application Developers
and Users

• You have difficulty managing multiple third-party
libraries in your code

• You (want to) use more than two languages in your
application

• Your code is long-lived and different pieces evolve at
different rates

• You want to be able to swap competing
implementations of the same idea and test without
modifying any of your code

• You want to compose your application with some
other(s) that weren’t originally designed to be
combined

CCA
Common Component Architecture

31

What are Components?

• No universally accepted definition in computer
science research …yet

• A unit of software development/deployment/reuse
– i.e. has interesting functionality
– Ideally, functionality someone else might be able to (re)use
– Can be developed independently of other components

• Interacts with the outside world only through well-
defined interfaces
– Implementation is opaque to the outside world

• Can be composed with other components
– “Plug and play” model to build applications
– Composition based on interfaces

CCA
Common Component Architecture

32

What is a Component Architecture?

• A set of standards that allows:
– Multiple groups to write units of software (components)…
– And have confidence that their components will work with

other components written in the same architecture

• These standards define…
– The rights and responsibilities of a component
– How components express their interfaces
– The environment in which are composed to form an

application and executed (framework)
– The rights and responsibilities of the framework

CCA
Common Component Architecture

33

A Simple Example:
Numerical Integration Components

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

Interoperable components
(provide same interfaces)

CCA
Common Component Architecture

34

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

An Application
Built from the Provided Components

Hides compexity: Driver
doesn’t care that
MonteCarloIntegrator
needs a random
number generator

CCA
Common Component Architecture

35

Another Application…

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

CCA
Common Component Architecture

36

Application 3…

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

CCA
Common Component Architecture

37

And Many More…

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

Dashed lines
indicate alternate

connections

Create different applications
in "plug-and-play" fashion

CCA
Common Component Architecture

38

Relationships:
Components, Objects, and Libraries

• Components are typically discussed as objects or
collections of objects
– Interfaces generally designed in OO terms, but…
– Component internals need not be OO
– OO languages are not required

• Component environments can enforce the use of
published interfaces (prevent access to internals)
– Libraries can not

• It is possible to load several instances (versions) of a
component in a single application
– Impossible with libraries

• Components must include some code to interface
with the framework/component environment
– Libraries and objects do not

CCA
Common Component Architecture

39

Domain-Specific Frameworks vs
Generic Component Architectures

Domain-Specific
• Often known as

“frameworks”
• Provide a significant

software infrastructure to
support applications in a
given domain
– Often attempts to generalize

an existing large application
• Often hard to adapt to use

outside the original domain
– Tend to assume a particular

structure/workflow for
application

• Relatively common
– E.g. Cactus, ESMF, PRISM
– Hypre, Overture, PETSc,

POOMA

Generic
• Provide the infrastructure to

hook components together
– Domain-specific

infrastructure can be built as
components

• Usable in many domains
– Few assumptions about

application
– More opportunities for reuse

• Better supports model
coupling across traditional
domain boundaries

• Relatively rare at present
– e.g. CCA

CCA
Common Component Architecture

40

Interfaces, Interoperability, and Reuse

• Interfaces define how components interact…
• Therefore interfaces are key to interoperability and

reuse of components

• In many cases, “any old interface” will do, but…
• Achieving reuse across multiple applications requires

agreement on the same interface for all of them

• “Standard” or “community” interfaces facilitate reuse
and interoperability
– Typically domain specific
– Formality of “standards” process varies
– Significant initial investment for long-term payback

More about community interface development efforts in “Applications” module

CCA
Common Component Architecture

41

Special Needs of Scientific HPC

• Support for legacy software
– How much change required for component environment?

• Performance is important
– What overheads are imposed by the component

environment?
• Both parallel and distributed computing are important

– What approaches does the component model support?
– What constraints are imposed?
– What are the performance costs?

• Support for languages, data types, and platforms
– Fortran?
– Complex numbers? Arrays? (as first-class objects)
– Is it available on my parallel computer?

CCA
Common Component Architecture

42

Commodity Component Models

• CORBA Component Model (CCM), COM, Enterprise
JavaBeans
– Arise from business/internet software world

• Componentization requirements can be high
• Can impose significant performance overheads
• No recognition of tightly-coupled parallelism
• May be platform specific
• May have language constraints
• May not support common scientific data types

CCA
Common Component Architecture

43

What is the CCA?

• CCA is a specification of a component environment
designed for high performance scientific computing
– Specification is decided by the CCA Forum

• CCA Forum membership open to all
– “CCA-compliant” just means conforming to the specification

• Doesn’t require using any of our code!

• A tool to enhance the productivity of scientific
programmers
– Make the hard things easier, make some intractable things

tractable
– Support & promote reuse & interoperability
– Not a magic bullet

CCA
Common Component Architecture

44

CCA Philosophy and Objectives

• Local and remote components
– Support local, HPC parallel, and distributed computing

• High Performance
– Design should support high-performance mechanisms

wherever possible (i.e. minimize copies, extra communications,
extra synchronization)

– Support SPMD and MPMD parallelism
– Allow user to chose parallel programming models

• Heterogeneity
– Multiple architectures, languages, run-time systems used

simultaneously in an application

• Integration
– Components should be easy to make and easy to use

• Openness and simplicity
– CCA spec should be open & usable with open software

CCA
Common Component Architecture

45

CCA Concepts: Components

• Components provide/use one or more ports
– A component with no ports isn’t very interesting

• Components include some code which
interacts with a CCA framework

NonlinearFunction

FunctionPortFunctionPort

MidpointIntegrator

IntegratorPort

CCA
Common Component Architecture

46

CCA Concepts: Ports

• Components interact through well-defined interfaces,
or ports
– In OO languages, a port is a class or interface
– In Fortran, a port is a bunch of subroutines or a module

• Components may provide ports – implement the
class or subroutines of the port ()

• Components may use ports – call methods or
subroutines in the port ()

• Links between ports denote a procedural
(caller/callee) relationship, not dataflow!
– e.g., FunctionPort could contain: evaluate(in Arg, out Result)

NonlinearFunction

FunctionPortFunctionPort

MidpointIntegrator

IntegratorPort

“Provides” Port

“Uses” Port

CCA
Common Component Architecture

47

CCA Concepts: Frameworks

• The framework provides the means to “hold”
components and compose them into applications

• Frameworks allow connection of ports without
exposing component implementation details

• Frameworks provide a small set of standard services
to components

• Currently: specific frameworks support specific
computing models (parallel, distributed, etc.)

• Future: full flexibility through integration or
interoperation

CCA
Common Component Architecture

48

Writing Components

• Components…
– Inherit from gov.cca.Component

• Implement setServices method to register ports this
component will provide and use

– Implement the ports they provide
– Use ports on other components

• getPort/releasePort from framework Services object

• Interfaces (ports) extend gov.cca.Port

Full details in the hands-on!

CCA
Common Component Architecture

49

Adapting Existing Code into
Components

Suitably structured code (programs, libraries) should be
relatively easy to adapt to the CCA. Here’s how:

1. Decide level of componentization
– Can evolve with time (start with coarse components, later

refine into smaller ones)

2. Define interfaces and write wrappers between them
and existing code

3. Add framework interaction code for each component
– setServices

4. Modify component internals to use other
components as appropriate
– getPort, releasePort and method invocations

Example in
the hands-on!

CCA
Common Component Architecture

50

Writing Frameworks
• There is no reason for most people to write

frameworks – just use the existing ones!
• Frameworks must provide certain ports…

– ConnectionEventService
• Informs the component of connections

– AbstractFramework
• Allows the component to behave as a framework

– BuilderService
• Instantiate components & connect ports

– ComponentRepository
• A default place where components are found

• Frameworks must be able to load components
– Typically shared object libraries, can be statically linked

• Frameworks must provide a way to compose
applications from components

CCA
Common Component Architecture

51

Component Lifecycle

• Composition Phase (assembling application)
– Component is instantiated in framework
– Component interfaces are connected appropriately

• Execution Phase (running application)
– Code in components uses functions provided by another

component

• Decomposition Phase (termination of application)
– Connections between component interfaces may be broken
– Component may be destroyed

In an application, individual components may be in
different phases at different times

Steps may be under human or software control

CCA
Common Component Architecture

52

User Viewpoint:
Loading and Instantiating Components

create Driver Driver
create LinearFunction LinearFunction
create MonteCarloIntegrator MonteCarloIntegrator

•Details are framework-specific!

•Ccaffeine currently provides both
command line and GUI approaches

• Components are code +
metadata

• Using metadata, a Palette
of available components is
constructed

• Components are
instantiated by user action
(i.e. by dragging from
Palette into Arena)

• Framework calls
component’s constructor,
then setServices

CCA
Common Component Architecture

53

connect Driver IntegratorPort MonteCarloIntegrator IntegratorPort
connect MonteCarloIntegrator FunctionPort LinearFunction FunctionPort
…

User Connects Ports
• Can only connect uses &

provides
– Not uses/uses or

provides/provides
• Ports connected by type, not

name
– Port names must be unique

within component
– Types must match across

components
• Framework puts info about

provider of port into using
component’s Services object

CCA
Common Component Architecture

54

Component’s View of Instantiation
• Framework calls component’s

constructor
• Component initializes internal

data, etc.
– Knows nothing outside itself

• Framework calls component’s
setServices
– Passes setServices an object

representing everything “outside”
– setServices declares ports

component uses and provides
• Component still knows nothing

outside itself
– But Services object provides the

means of communication w/
framework

• Framework now knows how to
“decorate” component and how it
might connect with others

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

MonteCarloIntegrator

Integrator code

Framework interaction code
constructor setServices destructor

CCA.Services
provides IntegratorPort

uses FunctionPort,
RandomGeneratorPort

CCA
Common Component Architecture

55

Component’s View
of Connection

• Framework puts info
about provider into user
component’s Services
object
– MonteCarloIntegrator’s

Services object is aware
of connection

– NonlinearFunction is
not!

• MCI’s integrator code
cannot yet call functions
on FunctionPort

NonlinearFunction

Function code

CCA.Services
provides FunctionPort

Framework interaction code
MonteCarloIntegrator

Integrator code

Framework interaction code

CCA.Services
…, uses FunctionPort

(connected to NonlinearFunction
FunctionPort), …

CCA
Common Component Architecture

56

Component’s View of Using a Port

MonteCarloIntegrator

Integrator code

Framework interaction code

CCA.Services
…, uses FunctionPort

(connected to NonlinearFunction
FunctionPort), …

• User calls getPort to obtain
(handle for) port from Services
– Finally user code can “see”

provider
• Cast port to expected type

– OO programming concept
– Insures type safety
– Helps enforce declared

interface
• Call methods on port

– e.g.
sum = sum + function->evaluate(x)

• Release port

CCA
Common Component Architecture

57

CCA Supports Local, Parallel and
Distributed Computing

• “Direct connection” preserves high
performance of local (“in-process”)
components

• Framework makes connection
• But is not involved in invocation

• Distributed computing has same
uses/provides pattern, but
framework intervenes between user
and provider

• Framework provides a proxy
provides port local to the uses
port

• Framework conveys invocation
from proxy to actual provides port

Integrator Linear Fun
Provides/Uses

Port

Direct Connection

Integrator

Linear Fun

Provides
Port

Network
Connection

Proxy Provides/
UsesPort

CCA
Common Component Architecture

58

CCA Concepts: “Direct Connection”
Maintains Local Performance

• Calls between components equivalent to a C++
virtual function call: lookup function location, invoke it
– Cost equivalent of ~2.8 F77 or C function calls
– ~48 ns vs 17 ns on 500 MHz Pentium III Linux box

• Language interoperability can impose additional
overheads
– Some arguments require conversion
– Costs vary, but small for typical scientific computing needs

• Calls within components have no CCA-imposed
overhead

• Implications
– Be aware of costs
– Design so inter-component calls do enough work that

overhead is negligible

More about performance in
the “Applications” module

CCA
Common Component Architecture

59

CCA Concepts: Framework Stays “Out
of the Way” of Component Parallelism

• Single component multiple data
(SCMD) model is component
analog of widely used SPMD
model

P0 P1 P2 P3

Components: Blue, Green, Red

Framework: Gray

MCMD/MPMD also supported

•Different components in same
process “talk to each” other via
ports and the framework

•Same component in different
processes talk to each other
through their favorite
communications layer (i.e.
MPI, PVM, GA)

• Each process loaded with the
same set of components wired
the same way

Other component models
ignore parallelism entirely

CCA
Common Component Architecture

60

• Simulation composed of multiple SCMD sub-tasks

• Usage Scenarios:
– Model coupling (e.g. Atmosphere/Ocean)
– General multi-physics applications
– Software licensing issues

• Approaches
– Run single parallel framework

• Driver component that partitions processes and builds rest of
application as appropriate (through BuilderService)

– Run multiple parallel frameworks
• Link through specialized communications components (e.g. MxN)
• Link as components (through AbstractFramework service; highly

experimental at present)

“Multiple-Component Multiple-Data”
Applications in CCA

OceanAtmosphere Land
Driver

Coupler (MxN)

CCA
Common Component Architecture

61

Components only on
process group B Group B

MCMD Within A Single Framework

Components on all
processes

Application driver & MCMD
support component

P0 P1 P2 P3

Framework

Components only on
process group A

Group A

Working examples available
using Ccaffeine framework,
with driver coded in Python

CCA
Common Component Architecture

62

CCA Concepts:
Language Interoperability

• Existing language
interoperability
approaches are “point-
to-point” solutions

• Babel provides a unified
approach in which all
languages are
considered peers

• Babel used primarily at
interfaces

C

C++

f77

f90

Python

Java

Babel

C

C++

f77

f90

Python

Java Babel
presentation
coming up!Few other component models support all languages

and data types important for scientific computing

CCA
Common Component Architecture

63

Advanced CCA Concepts
• Components are peers

– Application architecture determines relationships, not CCA
specification

• Frameworks provide a BuilderService which allows
programmatic composition of components

• Frameworks may present themselves as components
to other frameworks

• A “traditional” application can treat a CCA framework
as a library

• Meta-component models enable bridging between
CCA components and other component(-like)
environments
– e.g. SCIRun Dataflow, Visualization Toolkit (VTk), …

No time to go into detail on these, but
ask us for more info after the tutorial

CCA
Common Component Architecture

64

What the CCA isn’t…
• CCA doesn’t specify who owns “main”

– CCA components are peers
– Up to application to define component relationships

• “Driver component” is a common design pattern

• CCA doesn’t specify a parallel programming environment
– Choose your favorite
– Mix multiple tools in a single application

• CCA doesn’t specify I/O
– But it gives you the infrastructure to create I/O components
– Use of stdio may be problematic in mixed language env.

• CCA doesn’t specify interfaces
– But it gives you the infrastructure to define and enforce them
– CCA Forum supports & promotes “standard” interface efforts

• CCA doesn’t require (but does support) separation of
algorithms/physics from data
– Generic programming

CCA
Common Component Architecture

65

What the CCA is…

• CCA is a specification for a component environment
– Fundamentally, a design pattern
– Multiple “reference” implementations exist
– Being used by applications

• CCA is designed for interoperability
– Components within a CCA environment
– CCA environment with other tools, libraries, and frameworks

• CCA provides an environment in which domain-
specific application frameworks can be built
– While retaining opportunities for software reuse at multiple

levels

CCA
Common Component Architecture

66

Concept Review

• Ports
– Interfaces between components
– Uses/provides model

• Framework
– Allows assembly of components into applications

• Direct Connection
– Maintain performance of local inter-component calls

• Parallelism
– Framework stays out of the way of parallel components

• Language Interoperability
– Babel, Scientific Interface Definition Language (SIDL)

CCA
Common Component Architecture

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

tutorial-wg@cca-forum.org

67

Distributed Computing with the
CCA

CCA
Common Component Architecture

68

Component Composition
• Components can be linked along shared

interfaces (ports) where one component invokes
the services of another
– Two types of Ports

• Provides Ports – implements a remote interface
• Uses Ports – uses a remote interface

– A user and a provider of the same type can be linked
– Details of run-time substrate shielded in stubs and

skeletons
• Similar in concept to the files generated by Babel

Uses port -
a call site for
a remote function
invocation

Provides Port -
A set of functions
which can be
invoked remotely

CCA
Common Component Architecture

69

How Distributed Frameworks are
Different

Remote Creation
• Launch components in

remote address spaces
• Heterogeneity management
• Use resource managers to

service requests on each
remote resource

• Store, move and replicate
component binaries

Remote Invocation
• Need global pointers and not

local pointers
• Invoke methods across

machine boundaries
• Need global namespace for

names of components and
services

• Mechanism for implementing
remote method invocation
(RMI)

• Introspection mechanisms to
allow ports and services to
be discovered and accessed

CCA
Common Component Architecture

70

CCA Concepts that Influence Design of
Distributed Frameworks (1)

• Ports
– References to provides ports can move across address

spaces
– Uses ports are local to each component

• Services Object is present in each component
– Manages all the ports
– Hides details of framework-specific bindings for ports

• ComponentID: opaque handle to the component
– Should be serializable and deserializable
– Usually points to the services object

CCA
Common Component Architecture

71

CCA Concepts that Influence Design of
Distributed Frameworks (2)

• Builder Service: charged with following operations
– Create Components in remote address spaces

• Return a ComponentID of instantiated components
• Hide details of heterogeneous remote environments

– Connect ports of components
• Facilitate connection between uses and provides ports

– Only if they are of the same SIDL type
• Place provides port reference in the uses port table

• Introspection
– Allow remote querying of a component

• How many and what type of ports does the component have?

CCA
Common Component Architecture

72

Key Design Choices for Distributed
CCA Frameworks (1)

• How is the CCA ComponentID represented in a
distributed environment?
– Handle that can be passed to remote components
– Serialize and deserialize ComponentID
– Belong to a namespace understood in the entire framework
– Should enable optimized communication for co-located

components

• How is the PortType represented?
– Provides port should be designed as a remote service
– Uses port should be a local object

CCA
Common Component Architecture

73

Key Design Choices for Distributed
CCA Frameworks (2)

• Where can the key CCA functions be called from?
Are they remote or local?
– getPort() call on the services object

• Should return a remote reference for provides ports
• Note that the same call in the Ccaffeine framework returns a

local object
– Details of remote and local calls should be hidden

• Framework should internally distinguish local and remote calls

• How can components be connected?
– Need internal mechanism for uses port to obtain remote

reference of the provides port
• Information can be stored in a central table, facilitate

development of GUIs to show component assembly
• Distributed across components so they are aware of who they

are connected to

CCA
Common Component Architecture

74

Key Design Choices for Distributed
CCA Frameworks (3)

• Should Builder Service be centralized or
distributed?
– A component can have its own builder service if

• The builder service is lightweight
• The components has special create/connect

requirements

CCA
Common Component Architecture

75

Current CCA Distributed Frameworks
• SCIRun2

– University of Utah

• LegionCCA
– Binghamton University - State University of New York (SUNY)

• XCAT (Java and C++)
– Indiana University and Binghamton University

• DCA
– Indiana University
– A research framework for MXN

• Frameworks address the design questions in different
ways
– Each has a different set of capabilities
– Specialized for different kinds of applications

CCA
Common Component Architecture

76

SCIRun2

• Remote Method Invocation (RMI)
– Allows distributed components to interact through normal

mechanisms
– Components in the same address space incur no additional

overhead
– Based on a C++ in-house SIDL compiler

• Currently not based on Babel

• Remote creation of distributed components
– A distributed CCA framework uses RMI to coordinate

components
– A slave framework resides on each remote address space
– Uses ssh to start the slave framework
– CCA BuilderService communicates with master framework

which coordinates slave frameworks

CCA
Common Component Architecture

77

SCIRun2

• Support for distributed and parallel
components
– Able to launch MPI–parallel components

• Parallel components interact with other parallel
components (on different machines) through Parallel
Remote Method Invocation (PRMI)

– Each MPI process may contain multiple threads
• Increases concurrency and efficiency in the face of a

large parallel invocation load

CCA
Common Component Architecture

78

Architecture of Distributed SCIRun2

Component Loader
(Slave Framework)

Uses Ports

Provides Ports

PRMI

Connection
Table

(Referencing remote
Components)

Component ID
Table

(Referencing remote
provides ports)

SCIRun2 Framework (Master Framework)

Component Code
(User)

Component Code
(PIDL-Generated)

Component

Component Loader
(Slave Framework)

Uses Ports

Provides Ports

Component Code
(User)

Component Code
(PIDL-Generated)

Component

Builder Service

Service Object Service Object

CCA
Common Component Architecture

79

SCIRun2 Meta-Component Model

• In the same way that
components plug into a CCA
framework, component models
(such as CCA) plug into
SCIRun2

• Allows components of several
different families to be used
together

• Currently supports: CCA
(Babel), SCIRun Dataflow,
Visualization Toolkit (Vtk);
others coming…

• Bridging between components
of different models is semi-
automatic; current research is
defining a more automatic form
of bridging

CCA
Common Component Architecture

80

LegionCCA

• Legion is a collection of software services for the Grid
– Provides illusion of a virtual machine for geographically-

distributed resources

• LegionCCA: models CCA components as Legion objects

• Component Communication
– Uses Legion’s built-in RPC mechanisms, based on Unix sockets

• ComponentID: based on Legion LOID
– LOID: globally unique object id

• Component Connections:
– Information distributed across components
– Tables can be dynamically updated as connections are made

and broken

CCA
Common Component Architecture

81

Anatomy of a LegionCCA Component

Legion Library

CCALegion Library

Services Object

ProvidesPortsTable

UsesPortsTable

Registration and
Discovery Service

Builder Service

Legion
Context Space

createObject()
destroyObject()
etc.

Component-
Specific

Code

contextLookup()
addContextName()
etc.

Legion
Object Space

Remote Invocations, Calls to remote ports

Object Proxy, LOID’s, binding, messaging, etc.

ComponentID

Connection
Table getProvidesPorts()

etc.

Interface defined in the
CCA Specification=

CCA
Common Component Architecture

82

XCAT-Java

• Uses XSOAP for remote invocations
– XSOAP: implementation of the SOAP protocol from Indiana

University
– ComponentID: uses the XSOAP remote reference

• An XML document that has a subset of WSDL features

• Remote and Local Access to CCA functions
– Services object implements different interfaces for local and

remote calls

• Component Connections
– Uses an event mechanism to propagate connection

information

• Builder Service
– Each component has a builder service
– Creation can currently be done via GRAM or ssh

• GRAM: Grid Resource Allocation and Management

CCA
Common Component Architecture

83

XCAT-C++

• Remote Method Invocation
– Uses the Proteus multi-protocol library for remote

communication
• Proteus supports both messaging and RMI models
• Currently supports two protocols: binary and SOAP

– Stub-Skeleton generation is based on WSDLPull
• A toolkit for parsing WSDL (Web Service Description

Language)
– Support for SIDL will be provided via BabelRMI

• BabelRMI: Currently in the research phase

• Remote creation of distributed components
– Each component has a BuilderService
– Creation can be based on GRAM or ssh

CCA
Common Component Architecture

84

Architecture of an XCAT-C++ Component

CCA
Common Component Architecture

85

Proteus: Multi-Protocol Library

• One protocol does not suit
all applications

• Proteus provides single-
protocol abstraction to
components
– Allows users to dynamically

switch between protocols
• Example: RMI A and RMI

B, in the picture
– Facilitates use of

specialized implementations
of serialization and
deserialization

CCA Framework
Proteus API

Protocol 1 Protocol 2

TCP Myrinet

CCA
Common Component Architecture

86

Babel RMI

• Allows Babel objects to be accessed through
remote Babel stubs.

• Underlying RMI uses Proteus.

• Objects that can be transmitted (serializable)
inherent from Serializable.

• Actual implementation of serialization
functions is by users, since only they know
what needs to be serialized.

Research!

CCA
Common Component Architecture

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

tutorial-wg@cca-forum.org

87

CCA Applications

CCA
Common Component Architecture

88

Modern Scientific Software Development
• Complex codes, often coupling multiple types of physics, time or length

scales, involving a broad range of computational and numerical
techniques

• Different parts of the code require significantly different expertise to
write (well)

• Generally written
by teams rather
than individuals

Discretization

Algebraic Solvers

Data Redistribution

Mesh

Data Reduction

Physics Modules

Optimization

Derivative Computation

Collaboration

Diagnostics

Steering

Visualization

Adaptive Solution

Time Evolution

CCA
Common Component Architecture

89

Overview

• Examples (scientific) of increasing complexity
– Laplace equation
– Time-dependent heat equation
– Nonlinear reaction-diffusion system
– Quantum chemistry
– Climate simulation

• Tools
– MxN parallel data redistribution
– Performance measurement, modeling and scalability studies

• Community efforts & interface development
– TSTT Mesh Interface effort
– CCTTSS’s Data Object Interface effort

CCA
Common Component Architecture

90

Laplace Equation

∇2ϕ (x,y) = 0 ∈ [0,1] x [0,1]
ϕ(0,y)=0 ϕ(1,y)=sin (2πy)
δϕ/δy(x,0) = δϕ/δy(x,1) = 0

Discretization

Algebraic Solvers

Mesh

Physics Modules

Visualization

CCA
Common Component Architecture

91

Laplace Equation with Components

• The Driver
Component

– Responsible for
the overall
application flow

– Initializes the
mesh,
discretization,
solver and
visualization
components

– Sets the physics
parameters and
boundary
condition
information

• The Driver
Component

– Responsible for
the overall
application flow

– Initializes the
mesh,
discretization,
solver and
visualization
components

– Sets the physics
parameters and
boundary
condition
information

CCA
Common Component Architecture

92

Laplace Equation with Components

• The Driver
Component

– Responsible for
the overall
application flow

– Initializes the
mesh,
discretization,
solver and
visualization
components

– Sets the physics
parameters and
boundary
condition
information

• The Driver
Component

– Responsible for
the overall
application flow

– Initializes the
mesh,
discretization,
solver and
visualization
components

– Sets the physics
parameters and
boundary
condition
information

• The Mesh
Component

– Provides
geometry,
topology, and
boundary
information

– Provides the
ability to attach
user defined data
as tags to mesh
entities

– Is used by the
driver,
discretization
and visualization
components

• The Mesh
Component

– Provides
geometry,
topology, and
boundary
information

– Provides the
ability to attach
user defined data
as tags to mesh
entities

– Is used by the
driver,
discretization
and visualization
components

CCA
Common Component Architecture

93

Laplace Equation with Components

• The Driver
Component

– Responsible for
the overall
application flow

– Initializes the
mesh,
discretization,
solver and
visualization
components

– Sets the physics
parameters and
boundary
condition
information

• The Driver
Component

– Responsible for
the overall
application flow

– Initializes the
mesh,
discretization,
solver and
visualization
components

– Sets the physics
parameters and
boundary
condition
information

• The Mesh
Component

– Provides
geometry and
topology
information

– Provides the
ability to attach
user defined data
to mesh entities

– Is used by the
driver,
discretization
and visualization
components

• The Mesh
Component

– Provides
geometry and
topology
information

– Provides the
ability to attach
user defined data
to mesh entities

– Is used by the
driver,
discretization
and visualization
components

• The Discretization
Component

– Provides a finite
element
discretization of
basic operators
(gradient,
Laplacian, scalar
terms)

– Driver
determines
which terms are
included and
their coefficients

– BC, Assembly
etc

• The Discretization
Component

– Provides a finite
element
discretization of
basic operators
(gradient,
Laplacian, scalar
terms)

– Driver
determines
which terms are
included and
their coefficients

– BC, Assembly
etc

CCA
Common Component Architecture

94

Laplace Equation with Components

• The Driver
Component

– Responsible for
the overall
application flow

– Initializes the
mesh,
discretization,
solver and
visualization
components

– Sets the physics
parameters and
boundary
condition
information

• The Driver
Component

– Responsible for
the overall
application flow

– Initializes the
mesh,
discretization,
solver and
visualization
components

– Sets the physics
parameters and
boundary
condition
information

• The Mesh
Component

– Provides
geometry and
topology
information

– Provides the
ability to attach
user defined data
to mesh entities

– Is used by the
driver,
discretization
and visualization
components

• The Mesh
Component

– Provides
geometry and
topology
information

– Provides the
ability to attach
user defined data
to mesh entities

– Is used by the
driver,
discretization
and visualization
components

• The Discretization
Component

– Provides a finite
element
discretization of
basic operators
(gradient,
laplacian, scalar
terms)

– Provides
mechanisms for
general Dirichlet
and Neumann
boundary
condition
manipulations

• The Discretization
Component

– Provides a finite
element
discretization of
basic operators
(gradient,
laplacian, scalar
terms)

– Provides
mechanisms for
general Dirichlet
and Neumann
boundary
condition
manipulations

• The Solver
Component

– Provides access
to vector and
matrix operations
(e.g., create,
destroy, get, set)

– Provides a
“solve”
functionality for a
linear operator

• The Solver
Component

– Provides access
to vector and
matrix operations
(e.g., create,
destroy, get, set)

– Provides a
“solve”
functionality for a
linear operator

CCA
Common Component Architecture

95

Laplace Equation with Components

• The Driver
Component

– Responsible for
the overall
application flow

– Initializes the
mesh,
discretization,
solver and
visualization
components

– Sets the physics
parameters and
boundary
condition
information

• The Driver
Component

– Responsible for
the overall
application flow

– Initializes the
mesh,
discretization,
solver and
visualization
components

– Sets the physics
parameters and
boundary
condition
information

• The Mesh
Component

– Provides
geometry and
topology
information

– Provides the
ability to attach
user defined data
to mesh entities

– Is used by the
driver,
discretization
and visualization
components

• The Mesh
Component

– Provides
geometry and
topology
information

– Provides the
ability to attach
user defined data
to mesh entities

– Is used by the
driver,
discretization
and visualization
components

• The Discretization
Component

– Provides a finite
element
discretization of
basic operators
(gradient,
laplacian, scalar
terms)

– Provides
mechanisms for
general Dirichlet
and Neumann
boundary
condition
manipulations

– Computes

• The Discretization
Component

– Provides a finite
element
discretization of
basic operators
(gradient,
laplacian, scalar
terms)

– Provides
mechanisms for
general Dirichlet
and Neumann
boundary
condition
manipulations

– Computes
l t t i

• The Solver
Component

– Provides access
to vector and
matrix operations
(e.g., create,
destroy, get, set)

– Provides a
“solve”
functionality for a
linear operator

• The Solver
Component

– Provides access
to vector and
matrix operations
(e.g., create,
destroy, get, set)

– Provides a
“solve”
functionality for a
linear operator

• The Visualization
Component

– Uses the mesh
component to
print a vtk file of
ϕ on the
unstructured
triangular mesh

– Assumes user
data is attached
to mesh vertex
entities

• The Visualization
Component

– Uses the mesh
component to
print a vtk file of
ϕ on the
unstructured
triangular mesh

– Assumes user
data is attached
to mesh vertex
entities

CCA
Common Component Architecture

96

Time-Dependent Heat Equation
δϕ/δt = ∇2ϕ (x,y,t) ∈ [0,1] x [0,1]

ϕ(0,y,t)=0 ϕ(1,y,t)=.5sin(2πy)cos(t/2)
δϕ/δy(x,0) = δϕ/δy(x,1) = 0
ϕ(x,y,0)=sin(.5πx) sin (2πy)

Time Evolution

Discretization

Algebraic Solvers

Mesh

Physics Modules

Visualization

Data RedistributionDistributed Arrays

CCA
Common Component Architecture

97

Some things change…

• Requires a time integration component
– Based on the LSODE library

• Uses a new visualization component
– Based on AVS
– Requires an MxN data redistribution component

• The MxN redistribution component requires a
Distributed Array Descriptor component
– Similar to HPF arrays

• The driver component changes to
accommodate the new physics

CCA
Common Component Architecture

98

… and some things stay the same

• The mesh component doesn’t change
• The discretization component doesn’t change
• The solver component doesn’t change

– What we use from the solver component changes
– Only vectors are needed

CCA
Common Component Architecture

99

Heat Equation Wiring Diagram

Reused
Integration
Visualization
Driver/Physics

CCA
Common Component Architecture

100

What did this exercise teach us?

• Easy to incorporate the functionalities of components
developed at other labs and institutions given a well-
defined interface.
– In fact, some components (one uses and one provides) were

developed simultaneously across the country from each other
after the definition of a header file.

– Amazingly enough, they usually “just worked” when linked
together (and debugged individually).

• In this case, the complexity of the component-based
approach was higher than the original code
complexity.
– Partially due to the simplicity of this example
– Partially due to the limitations of the some of the current

implementations of components

CCA
Common Component Architecture

101

Nonlinear Reaction-Diffusion Equation

• Flame Approximation
– H2-Air mixture; ignition via 3 hot-spots
– 9-species, 19 reactions, stiff chemistry

• Governing equation

• Domain
– 1cm X 1cm domain
– 100x100 coarse mesh
– finest mesh = 12.5 micron.

• Timescales
– O(10ns) to O(10 microseconds)

ii
i wY
t
Y

D+∇∇=
∂
∂ α.

CCA
Common Component Architecture

102

Numerical Solution

• Adaptive Mesh Refinement: GrACE
• Stiff integrator: CVODE
• Diffusive integrator: 2nd Order Runge Kutta
• Chemical Rates: legacy f77 code
• Diffusion Coefficients: legacy f77 code
• New code less than 10%

CCA
Common Component Architecture

103

Reaction-Diffusion Wiring Diagram

Reused
Slow Time Scale Integration
Fast Time Scale Integration
Driver/Physics

CCA
Common Component Architecture

104

Evolution of the Solution

Temperature

OH Profile
No OH at t = 0

CCA
Common Component Architecture

105

The need for AMR

• H2O2 chemical subspecies profile
– Only 100 microns thick (about 10 fine level cells)
– Not resolvable on coarsest mesh

CCA
Common Component Architecture

106

• Given a rectangular 2-dimensional domain and
boundary values along the edges of the domain

• Find the surface with minimal area that satisfies the
boundary conditions, i.e., compute

min f(x), where f: R → R
• Solve using optimization

components based on
TAO (ANL)

Unconstrained Minimization Problem

CCA
Common Component Architecture

107

Unconstrained Minimization Using a Structured Mesh

Reused
TAO Solver
Driver/Physics

CCA
Common Component Architecture

108

Computational Chemistry:
Molecular Optimization

• Problem Domain: Optimization of
molecular structures using quantum
chemical methods

• Investigators: Yuri Alexeev (PNNL), Steve Benson (ANL),
Curtis Janssen (SNL), Joe Kenny (SNL), Manoj Krishnan
(PNNL), Lois McInnes (ANL), Jarek Nieplocha (PNNL),
Jason Sarich (ANL), Theresa Windus (PNNL)

• Goals: Demonstrate interoperability among software
packages, develop experience with large existing code
bases, seed interest in chemistry domain

CCA
Common Component Architecture

109

Molecular Optimization Overview
• Decouple geometry optimization from electronic structure
• Demonstrate interoperability of electronic structure components
• Build towards more challenging optimization problems, e.g.,

protein/ligand binding studies

Components in gray can be swapped in to create new applications
with different capabilities.

CCA
Common Component Architecture

110

Wiring Diagram for Molecular Optimization

• Electronic structures components:
• MPQC (SNL)

http://aros.ca.sandia.gov/~cljanss/mpqc

• NWChem (PNNL)

http://www.emsl.pnl.gov/pub/docs/nwchem

• Optimization components: TAO (ANL)
http://www.mcs.anl.gov/tao

• Linear algebra components:
• Global Arrays (PNNL)

http://www.emsl.pnl.gov:2080/docs/global/ga.html

• PETSc (ANL)

http://www.mcs.anl.gov/petsc

CCA
Common Component Architecture

111

Actual Improvements

30273033Cholesterol

48545143Aspirin

62856779Phosposerine

43754556Isoprene

19261933Glycine

MPQC/TAOMPQCNWChem/TAONWChemMolecule

Function and gradient evaluations

CCA
Common Component Architecture

112

Componentized Climate Simulations
• NASA’s ESMF project has a component-based design for Earth

system simulations
– ESMF components can be assembled and run in CCA compliant

frameworks such as Ccaffeine.
• Zhou et al (NASA Goddard) has integrated a simple coupled

Atmosphere-Ocean model into Ccaffeine and is working on the
Cane-Zebiak model, well-known for predicting El Nino events.

• Different PDEs for ocean and atmosphere, different grids and
time-stepped at different rates.
– Synchronization at ocean-atmosphere interface; essentially,

interpolations between meshes
– Ocean & atmosphere advanced in sequence

• Intuitively : Ocean, Atmosphere and 2 coupler components
– 2 couplers : atm-ocean coupler and ocean-atm coupler.
– Also a Driver / orchestrator component.

CCA
Common Component Architecture

113

Coupled Atmosphere-Ocean Model Assembly

Data flow

Port link

• Climate Component :

• Schedule
component coupling

• Data flow is via pointer
NOT data copy.

• All components in
C++; run in
CCAFFEINE.

• Multiple ocean models
with the same interface

• Can be selected by
a user at runtime

CCA
Common Component Architecture

114

Simulation Results

A non-uniform ocean field variable
(e.g., current)

…changes a field variable (e.g.,wind)
in the atmosphere !

CCA
Common Component Architecture

115

• Certain simulations need multi-granular concurrency
– Multiple Component Multiple Data, multi-model runs

• Usage Scenarios:
– Model coupling (e.g. Atmosphere/Ocean)
– General multi-physics applications
– Software licensing issues

• Approaches
– Run single parallel framework

• Driver component that partitions processes and builds rest of
application as appropriate (through BuilderService)

– Run multiple parallel frameworks
• Link through specialized communications components (e.g. MxN)
• Link as components (through AbstractFramework service; highly

experimental at present)

Concurrency At Multiple Granularities

OceanAtmosphere Land
Driver

Coupler (MxN)

CCA
Common Component Architecture

116

Componentizing your own application

• The key step: think about the decomposition strategy
– By physics module?
– Along numerical solver functionality?
– Are there tools that already exist for certain pieces? (solvers,

integrators, meshes?)
– Are there common interfaces that already exist for certain

pieces?
– Be mindful of the level of granularity

• Decouple the application into pieces
– Can be a painful, time-consuming process

• Incorporate CCA-compliance
• Compose your new component application
• Enjoy!

CCA
Common Component Architecture

117

Overview

• Examples (scientific) of increasing complexity
– Laplace equation
– Time-dependent heat equation
– Nonlinear reaction-diffusion system
– Quantum chemistry
– Climate simulation

• Tools
– MxN parallel data redistribution
– Performance measurement, modeling and scalability studies

• Community efforts & interface development
– TSTT Mesh Interface effort
– CCTTSS’s Data Object Interface effort

CCA
Common Component Architecture

118

CCA Concepts:
MxN Parallel Data Redistribution

• Share Data Among Coupled Parallel Models
– Disparate Parallel Topologies (M processes vs. N)
– e.g. Ocean & Atmosphere, Solver & Optimizer…
– e.g. Visualization (Mx1, increasingly, MxN)

Research area -- tools under development

CCA
Common Component Architecture

119

“MxN” Parallel Data Redistribution:
The Problem…

• Create complex scientific simulations by coupling
together multiple parallel component models
– Share data on “M” processors with data on “N”

• M != N ~ Distinct Resources (Pronounced “M by N”)

– Model coupling, e.g., climate, solver / optimizer
– Collecting data for visualization

• Mx1; increasingly MxN (parallel rendering clusters)

• Define “standard” interface
– Fundamental operations for any parallel data coupler

• Full range of synchronization and communication options

CCA
Common Component Architecture

120

Hierarchical MxN Approach
• Basic MxN Parallel Data Exchange

– Component implementation
– Initial prototypes based on CUMULVS & PAWS

• Interface generalizes features of both

• Higher-Level Coupling Functions
– Time & grid (spatial) interpolation, flux conservation
– Units conversions…

• “Automatic” MxN Service via Framework
– Implicit in method invocations, “parallel RMI”

http://www.csm.ornl.gov/cca/mxn/

CCA
Common Component Architecture

121

CCA Delivers
Performance

Local
• No CCA overhead within components
• Small overhead between components
• Small overhead for language interoperability
• Be aware of costs & design with them in mind

– Small costs, easily amortized

Parallel
• No CCA overhead on parallel computing
• Use your favorite parallel programming model
• Supports SPMD and MPMD approaches

Distributed (remote)
• No CCA overhead – performance depends

on networks, protocols
• CCA frameworks support OGSA/Grid

Services/Web Services and other
approaches

Maximum 0.2% overhead for CCA vs
native C++ code for parallel molecular
dynamics up to 170 CPUs

Aggregate time for linear solver
component in unconstrained minimization
problem w/ PETSc

CCA
Common Component Architecture

122

Overhead from Component Invocation

• Invoke a component with
different arguments

• Array
• Complex
• Double Complex

• Compare with f77 method
invocation

• Environment
– 500 MHz Pentium III
– Linux 2.4.18
– GCC 2.95.4-15

• Components took 3X longer
• Ensure granularity is

appropriate!
• Paper by Bernholdt, Elwasif,

Kohl and Epperly

241ns86nsDouble
complex

209ns75nsComplex

224ns80 nsArray

Componentf77Function arg
type

CCA
Common Component Architecture

123

 0

 4

 8

 12

 16

 20

 24

 28

 32

 36

 40

 44

 48

 52

 56

 60

 64

 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

S
pe

ed
-u

p

Number of Processors

Isoprene HF/6-311G(2df,2pd) Speed-up in MPQC-based Applications

linear
MPQC
MPQC/TAO

Parallel Scaling of MPQC w/ native and TAO optimizers

Parallel Scaling of the QC Simulation

CCA
Common Component Architecture

124

Scalability of Scientific Data Components
in CFRFS Combustion Applications

• Investigators: S. Lefantzi, J. Ray,
and H. Najm (SNL)

• Uses GrACEComponent
• Shock-hydro code with no

refinement
• 200 x 200 & 350 x 350 meshes
• Cplant cluster

– 400 MHz EV5 Alphas
– 1 Gb/s Myrinet

• Negligible component overhead
• Worst perf : 73% scaling efficiency

for 200x200 mesh on 48 procs

Reference: S. Lefantzi, J. Ray, and H. Najm, Using the Common Component Architecture to Design High Performance
Scientific Simulation Codes, Proc of Int. Parallel and Distributed Processing Symposium, Nice, France, 2003.

CCA
Common Component Architecture

125

Performance Measurement In A
Component World

• CCA provides a novel means of profiling & modeling
component performance

• Need to collect incoming inputs and match them up
with the corresponding performance but how ?
– Need to “instrument” the code

• But has to be non-intrusive, since we may not “own” component
code

• What kind of performance infrastructure can achieve
this?
– Previous research suggests proxies

• Proxies serve to intercept and forward method calls

CCA
Common Component Architecture

126

“Integrated” Performance
Measurement Capability

Measurement infrastructure:
• Proxy

– Notifies MasterMind of all method
invocations of a given
component, along with
performance dependent inputs

– Generated automatically using
PDT

• MasterMind
– Collects and stores all

measurement data
• TAU

– Makes all performance
measurements

Component1

Component2Component1

Component2Proxy for
Component
2

MasterMind TAU

Before:

After:

CCA
Common Component Architecture

127

Component Application With Proxies

CCA
Common Component Architecture

128

Overview

• Examples (scientific) of increasing complexity
– Laplace equation
– Time-dependent heat equation
– Nonlinear reaction-diffusion system
– Quantum chemistry
– Climate simulation

• Tools
– MxN parallel data redistribution
– Performance measurement, modeling and scalability studies

• Community efforts & interface development
– TSTT Mesh Interface effort
– CCTTSS’s Data Object Interface effort

CCA
Common Component Architecture

129

Scientific Data Objects
& Interfaces

• Define “Standard” Interfaces for HPC Scientific Data
– Descriptive, Not (Necessarily) Generative…

• Basic Scientific Data Object
– David Bernholdt, ORNL

• Structured & Unstructured Mesh
– Lori Freitag, LLNL
– Collaboration with SciDAC TSTT Center

• Block Structured AMR
– Phil Colella, LBNL
– Collaboration with APDEC & TSTT

CCA
Common Component Architecture

130

The Next Level
• Common Interface Specification

– Provides plug-and-play interchangeability
– Requires domain specific experts
– Typically a difficult, time-consuming task
– A success story: MPI

• A case study… the TSTT/CCA mesh interface
– TSTT = Terascale Simulation Tools and

Technologies (www.tstt-scidac.org)
– A DOE SciDAC ISIC focusing on meshes

and discretization
– Goal is to enable

• hybrid solution strategies
• high order discretization
• Adaptive techniques

Geometry
Information
(Level A)

Full
Geometry
Meshes
(Level B)

Mesh
Compone
nts
(Level C)

CCA
Common Component Architecture

131

Proliferations of interfaces – the N2 problem

Current Situation
• Public interfaces for numerical libraries are unique
• Many-to-Many couplings require Many2 interfaces

• Often a heroic effort to understand the inner workings of both
codes

• Not a scalable solution

Dist. Array

Overture

PAOMD

SUMAA3d

PETSc

ISIS++

Trilinos

CCA
Common Component Architecture

132

Common Interface Specification
Reduces the Many-to-Many problem to a Many-to-One problem

– Allows interchangeability and experimentation
– Challenges

• Interface agreement
• Functionality limitations
• Maintaining performance

Dist. Array

Overture

PAOMD

SUMAA3d

ISIS++

PETSc

Trilinos

T
S
T
T

E
S
I

CCA
Common Component Architecture

133

TSTT Philosophy

• Create a small set of interfaces that existing
packages can support
– AOMD, CUBIT, Overture, GrACE, …
– Enable both interchangeability and interoperability

• Balance performance and flexibility
• Work with a large tool provider and application

community to ensure applicability
– Tool providers: TSTT and CCA SciDAC centers
– Application community: SciDAC and other DOE applications

CCA
Common Component Architecture

134

CCTTSS Research Thrust Areas
and Main Working Groups

• Scientific Components
– Scientific Data Objects
Lois Curfman McInnes, ANL (curfman@mcs.anl.gov)

• “MxN” Parallel Data Redistribution
Jim Kohl, ORNL (kohlja@ornl.gov)

• Frameworks
– Language Interoperability / Babel / SIDL
– Component Deployment / Repository
Gary Kumfert, LLNL (kumfert@llnl.gov)

• User Outreach
David Bernholdt, ORNL (bernholdtde@ornl.gov)

CCA
Common Component Architecture

135

Summary
• Complex applications that use components are possible

– Combustion
– Chemistry applications
– Optimization problems
– Climate simulations

• Component reuse is significant
– Adaptive Meshes
– Linear Solvers (PETSc, Trilinos)
– Distributed Arrays and MxN Redistribution
– Time Integrators
– Visualization

• Examples shown here leverage and extend parallel software and
interfaces developed at different institutions

– Including CUMULVS, ESI, GrACE, LSODE, MPICH, PAWS, PETSc, PVM, TAO,
Trilinos, TSTT.

• Performance is not significantly affected by component use
• Definition of domain-specific common interfaces is key

CCA
Common Component Architecture

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

tutorial-wg@cca-forum.org

136

Language Interoperable
CCA Components via

CCA
Common Component Architecture

137

Goal of This Module

Legacy codes ���� Babelized CCA Components

• Introduction To:
– Babel
– SIDL

• See Babel in use
– “Hello World” example

• Babel aspects of writing a CCA component

CCA
Common Component Architecture

138

What I mean by
“Language Interoperability”

Simulation Framework
(C)

Solver Library
(C++)

Numerical Routines
(f77)

Scripting Driver
(Python)

Visualization System
(Java)

Callback Handlers
(Python)

Callback Handlers
(Python)

CCA
Common Component Architecture

139

One reason why mixing
languages is hard Native

cfortran.h

SWIG

JNI

Siloon

Chasm

Platform
Dependent

C

C++

f77

f90

Python

Java

CCA
Common Component Architecture

140

Babel makes all supported
languages peers

C

C++

f77

f90

Python

Java

Once a library has been
“Babelized” it is equally

accessible from all
supported languages

This is not a
Lowest Common

Denominator
Solution!

CCA
Common Component Architecture

141

Babel Module’s Outline

• Introduction
• Babel Basics

– How to use Babel in a “Hello World” Example
– SIDL Grammar
– Wrapping legacy code

• Babel aspects of writing a CCA component

CCA
Common Component Architecture

142

Babel’s Two Parts:
Code Generator + Runtime Library

SIDL
interface

description

Babel
Compiler

C++

F77

F90

Python

C

XML

Matlab?

Java

Babel
Runtime

Application

CCA
Common Component Architecture

143

greetings.sidl: A Sample SIDL File

packagepackagepackagepackage greetings greetings greetings greetings version version version version 1.0 { 1.0 { 1.0 { 1.0 {

interfaceinterfaceinterfaceinterface Hello { Hello { Hello { Hello {

voidvoidvoidvoid setNamesetNamesetNamesetName((((inininin string name);string name);string name);string name);

stringstringstringstring sayItsayItsayItsayIt ();();();();

}}}}

classclassclassclass English English English English implementsimplementsimplementsimplements----allallallall Hello { }Hello { }Hello { }Hello { }

}}}}

packagepackagepackagepackage greetings greetings greetings greetings version version version version 1.0 { 1.0 { 1.0 { 1.0 {

interfaceinterfaceinterfaceinterface Hello { Hello { Hello { Hello {

voidvoidvoidvoid setNamesetNamesetNamesetName((((inininin string name);string name);string name);string name);

stringstringstringstring sayItsayItsayItsayIt ();();();();

}}}}

classclassclassclass English English English English implementsimplementsimplementsimplements----allallallall Hello { }Hello { }Hello { }Hello { }

}}}}

CCA
Common Component Architecture

144

Library Developer Does This...

1. `babel --server=C++ greetings.sidl`
2. Add implementation details
3. Compile & Link into Library/DLL

SIDL
interface

description

Babel
Compiler C++ Skels

C++ Impls

IORs

C++ Stubs

libgreetings.so

CCA
Common Component Architecture

145

Adding the Implementation

stringstringstringstring

greetings::English_greetings::English_greetings::English_greetings::English_implimplimplimpl::::::::sayItsayItsayItsayIt() () () ()

throw () throw () throw () throw ()

{{{{

// DO// DO// DO// DO----NOTNOTNOTNOT----DELETEDELETEDELETEDELETE splicersplicersplicersplicer.begin(greetings.English..begin(greetings.English..begin(greetings.English..begin(greetings.English.sayItsayItsayItsayIt))))

stringstringstringstring msgmsgmsgmsg(“Hello “);(“Hello “);(“Hello “);(“Hello “);

returnreturnreturnreturn msgmsgmsgmsg + d_name + “!”;+ d_name + “!”;+ d_name + “!”;+ d_name + “!”;

// DO// DO// DO// DO----NOTNOTNOTNOT----DELETEDELETEDELETEDELETE splicersplicersplicersplicer.end(greetings.English..end(greetings.English..end(greetings.English..end(greetings.English.sayItsayItsayItsayIt))))

}}}}

stringstringstringstring

greetings::English_greetings::English_greetings::English_greetings::English_implimplimplimpl::::::::sayItsayItsayItsayIt() () () ()

throw () throw () throw () throw ()

{{{{

// DO// DO// DO// DO----NOTNOTNOTNOT----DELETEDELETEDELETEDELETE splicersplicersplicersplicer.begin(greetings.English..begin(greetings.English..begin(greetings.English..begin(greetings.English.sayItsayItsayItsayIt))))

stringstringstringstring msgmsgmsgmsg(“Hello “);(“Hello “);(“Hello “);(“Hello “);

returnreturnreturnreturn msgmsgmsgmsg + d_name + “!”;+ d_name + “!”;+ d_name + “!”;+ d_name + “!”;

// DO// DO// DO// DO----NOTNOTNOTNOT----DELETEDELETEDELETEDELETE splicersplicersplicersplicer.end(greetings.English..end(greetings.English..end(greetings.English..end(greetings.English.sayItsayItsayItsayIt))))

}}}}

namespace greetings { namespace greetings { namespace greetings { namespace greetings {
class English_class English_class English_class English_implimplimplimpl {{{{

private:private:private:private:
// DO// DO// DO// DO----NOTNOTNOTNOT----DELETEDELETEDELETEDELETE splicersplicersplicersplicer.begin(greetings.English._.begin(greetings.English._.begin(greetings.English._.begin(greetings.English._implimplimplimpl))))
string d_name;string d_name;string d_name;string d_name;
// DO// DO// DO// DO----NOTNOTNOTNOT----DELETEDELETEDELETEDELETE splicersplicersplicersplicer.end(greetings.English._.end(greetings.English._.end(greetings.English._.end(greetings.English._implimplimplimpl))))

namespace greetings { namespace greetings { namespace greetings { namespace greetings {
class English_class English_class English_class English_implimplimplimpl {{{{

private:private:private:private:
// DO// DO// DO// DO----NOTNOTNOTNOT----DELETEDELETEDELETEDELETE splicersplicersplicersplicer.begin(greetings.English._.begin(greetings.English._.begin(greetings.English._.begin(greetings.English._implimplimplimpl))))
string d_name;string d_name;string d_name;string d_name;
// DO// DO// DO// DO----NOTNOTNOTNOT----DELETEDELETEDELETEDELETE splicersplicersplicersplicer.end(greetings.English._.end(greetings.English._.end(greetings.English._.end(greetings.English._implimplimplimpl))))

CCA
Common Component Architecture

146

Library User Does This...

1. `babel --client=F90 greetings.sidl`
2. Compile & Link generated Code & Runtime
3. Place DLL in suitable location

SIDL
interface

description

Babel
Compiler IOR

Headers

F90 Stubs

libgreetings.so

Babel
Runtime

Application

CCA
Common Component Architecture

147

F90/Babel “Hello World” Application
programprogramprogramprogram helloclienthelloclienthelloclienthelloclient

useuseuseuse greetings_Englishgreetings_Englishgreetings_Englishgreetings_English

implicitimplicitimplicitimplicit nonenonenonenone

typetypetypetype(greetings_English_t) :: (greetings_English_t) :: (greetings_English_t) :: (greetings_English_t) :: objobjobjobj

charactercharactercharactercharacter ((((lenlenlenlen=80) :: =80) :: =80) :: =80) :: msgmsgmsgmsg

charactercharactercharactercharacter ((((lenlenlenlen=20) :: =20) :: =20) :: =20) :: namenamenamename

name=name=name=name=’World’’World’’World’’World’

callcallcallcall newnewnewnew((((objobjobjobj))))

callcallcallcall setNamesetNamesetNamesetName((((objobjobjobj, name), name), name), name)

callcallcallcall sayItsayItsayItsayIt((((objobjobjobj, , , , msg msg msg msg))))

callcallcallcall deleteRefdeleteRefdeleteRefdeleteRef((((objobjobjobj))))

printprintprintprint *, *, *, *, msgmsgmsgmsg

endendendend programprogramprogramprogram helloclienthelloclienthelloclienthelloclient

programprogramprogramprogram helloclienthelloclienthelloclienthelloclient

useuseuseuse greetings_Englishgreetings_Englishgreetings_Englishgreetings_English

implicitimplicitimplicitimplicit nonenonenonenone

typetypetypetype(greetings_English_t) :: (greetings_English_t) :: (greetings_English_t) :: (greetings_English_t) :: objobjobjobj

charactercharactercharactercharacter ((((lenlenlenlen=80) :: =80) :: =80) :: =80) :: msgmsgmsgmsg

charactercharactercharactercharacter ((((lenlenlenlen=20) :: =20) :: =20) :: =20) :: namenamenamename

name=name=name=name=’World’’World’’World’’World’

callcallcallcall newnewnewnew((((objobjobjobj))))

callcallcallcall setNamesetNamesetNamesetName((((objobjobjobj, name), name), name), name)

callcallcallcall sayItsayItsayItsayIt((((objobjobjobj, , , , msg msg msg msg))))

callcallcallcall deleteRefdeleteRefdeleteRefdeleteRef((((objobjobjobj))))

printprintprintprint *, *, *, *, msgmsgmsgmsg

endendendend programprogramprogramprogram helloclienthelloclienthelloclienthelloclient

These subroutines
come from directly
from the SIDL

These subroutines
come from directly
from the SIDL

Some other subroutines
are “built in” to every
SIDL class/interface

Some other subroutines
are “built in” to every
SIDL class/interface

CCA
Common Component Architecture

148

SIDL Grammar (1/3):
Packages and Versions

• Packages can be nested

• Versioned Packages
– defined as packages with explicit version number

OR packages enclosed by a versioned package
– Reentrant by default, but can be declared final
– May contain interfaces, classes, or enums

• Unversioned Packages
– Can only enclose more packages, not types
– Must be re-entrant. Cannot be declared final

package package package package foo foo foo foo version 0.1 { package bar { ... } }version 0.1 { package bar { ... } }version 0.1 { package bar { ... } }version 0.1 { package bar { ... } }package package package package foo foo foo foo version 0.1 { package bar { ... } }version 0.1 { package bar { ... } }version 0.1 { package bar { ... } }version 0.1 { package bar { ... } }

You’ll use
SIDL in the
hands-on

CCA
Common Component Architecture

149

SIDL Grammar (2/3):
Classes & Interfaces

• SIDL has 3 user-defined objects
– Interfaces – APIs only, no implementation
– Abstract Classes – 1 or more methods unimplemented
– Concrete Classes – All methods are implemented

• Inheritance (like Java/Objective C)
– Interfaces may extend Interfaces
– Classes extend no more than one Class
– Classes can implement multiple Interfaces

• Only concrete classes can be instantiated

CCA
Common Component Architecture

150

SIDL Grammar (3/3):
Methods and Arguments

• Methods are public virtual by default
– static methods are not associated with an object

instance
– final methods can not be overridden

• Arguments have 3 parts
– Mode: can be in, out, or inout (like CORBA, but

semantically different than F90)
– Type: one of (bool, char, int, long, float, double,

fcomplex, dcomplex, array<Type,Dimension>, enum,
interface, class)

– Name

CCA
Common Component Architecture

151

Babelizing Legacy Code

1. Write your SIDL interface
2. Generate server side in your native langauge
3. Edit Implementation (Impls) to dispatch to your code

(Do NOT modify the legacy library itself!)
4. Compile & Link into Library/DLL

mycode.sidl Babel
Compiler Skels

Impls

IORs

Stubs

libmycode.so

legacy_library.so

CCA
Common Component Architecture

152

Known Projects Using Babel
(see www.llnl.gov/CASC/components/gallery.html for more)

I implemented a Babel-based interface
for the hypre library of linear equation
solvers. The Babel interface was
straightforward to write and gave us
interfaces to several languages for less
effort than it would take to interface to a
single language.

--Jeff Painter, LLNL.

research.cs.vt.edu/lacsa

Supplementary material for notes

CCA
Common Component Architecture

153

Investing in Babelization can improve
the interface to the code.

“When Babelizing LEOS [an equation of
state library at LLNL], I completely ignored
the legacy interface and wrote the SIDL the
way I thought the interface should be. After
running Babel to generate the code, I found
all the hooks I needed to connect LEOS
without changing any of it. Now I’ve got a
clean, new, object-oriented python interface
to legacy code. Babel is doing much more
than just wrapping here.”

-- Charlie Crabb, LLNL
(conversation)

Supplementary material for notes

CCA
Common Component Architecture

154

Babel Module’s Outline

• Introduction
• Babel Basics

– How to use Babel in a “Hello World” Example
– SIDL Grammar

• Babel aspects of writing a CCA component

CCA
Common Component Architecture

155

How to Write and Use
Babelized CCA Components

1. Define “Ports” in SIDL
2. Define “Components” that implement those

Ports, again in SIDL
3. Use Babel to generate the glue-code
4. Write the guts of your component(s)

CCA
Common Component Architecture

156

How to Write A
Babelized CCA Component (1/3)

1. Define “Ports” in SIDL
– CCA Port =

• a SIDL Interface
• extends gov.cca.Port

package functions version 1.0 {
interface Function extends gov.cca.Port {

double evaluate(in double x);
}

}

package functions version 1.0 {
interface Function extends gov.cca.Port {

double evaluate(in double x);
}

}

CCA
Common Component Architecture

157

How to Write A
Babelized CCA Component (2/3)

2. Define “Components” that implement those Ports
– CCA Component =

• SIDL Class
• implements gov.cca.Component (& any provided ports)

class LinearFunction implements functions.Function,
gov.cca.Component {

double evaluate(in double x);
void setServices(in cca.Services svcs);

}

class LinearFunction implements functions.Function,
gov.cca.Component {

double evaluate(in double x);
void setServices(in cca.Services svcs);

}

class LinearFunction implements-all
functions.Function, gov.cca.Component { }

class LinearFunction implements-all
functions.Function, gov.cca.Component { }

CCA
Common Component Architecture

158

Tip: Use Babel’s XML output like
precompiled headers in C++

1. precompile SIDL into XML
--text=xml

2. store XML in a directory
3. Use Babel’s –R option to

specify search directories

cca.sidl Babel
Compiler XML

Type
Repository

functions.sidl Babel
Compiler Skels

Impls

IORs

Stubs

Supplementary material for notes

CCA
Common Component Architecture

159

How to Write A
Babelized CCA Component (3/3)

3. Use Babel to generate the glue code
– `babel --server=C –Rrepo function.sidl`

4. Add implementation details

SIDL
interface

description

Babel
Compiler C Skels

C Impls

IORs

C Stubs

libfunction.so

Repo
(XML)

CCA
Common Component Architecture

160

Limitations of Babel’s Approach
to Language Interoperabilty

• Babel is a code generator
– Do obscure tricks no one would do by hand
– Don’t go beyond published language standards

• Customized compilers / linkers / loaders beyond our
scope
– E.g. icc and gcc currently don’t mix on Linux
– E.g. No C++-style templates in SIDL. (Would require special

linkers/loaders to generate code for template instantiation,
like C++ does.)

• Babel makes language interoperability feasible, but
not trivial
– Build tools severely underpowered for portable multi-

language codes

Supplementary material for notes

CCA
Common Component Architecture

161

Contact Info
• Project: http://www.llnl.gov/CASC/components

– Babel: language interoperability tool
– Alexandria: component repository
– Quorum: web-based parliamentary system
– Gauntlet (coming soon): testing framework

• Bug Tracking: http://www-casc.llnl.gov/bugs
• Project Team Email: components@llnl.gov
• Mailing Lists: majordomo@lists.llnl.gov

subscribe babel-users [email address]
subscribe babel-announce [email address]

